Objective Methods for Comparing Autoregressive Order - Determining Criteria
نویسنده
چکیده
Distance measures between a reference signal and the autoregressive estimate are used as an objective reference for comparing autoregressive order-determining criteria. The distance measures discussed are the rms log spectral deviation, its normalized cepstral distance approximation, the normalized autoregressive transfer function error, the equivalent Itakura distance, and the average squared prediction error. Using them it is found that the AIC criterion is one of the best criteria and performs better than the consistent Schwartz' and Hannan and Quinn's criteria.
منابع مشابه
New Procedure to Improve the Order Selection of Autoregressive Time Series Model
Problem statement: We propose new approach could be used to guide the selection of the “true” order of autoregressive model for different sample size. Approach: We used simulation study to compare four model selection criteria with and without the help of the new approach. The comparison of the four model selection criteria was in terms of their percentage of number of times that they identify ...
متن کاملAnalysis of Realized Volatility in Tehran Stock Exchange using Heterogeneous Autoregressive Models Approach
Objective: The present study aims atinvestigating the behavior of realized volatility for high-frequency data of Tehran Stock Index from April28th, 2012 to August 8th, 2018. Methods: Three different types of HAR models including of HAR-RV-CJ, HAR-RV and HAR-RVJ were used to analyze the Realized Volatility. Results: The obtained results of three diverse models revealed that the estimated Reali...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملAutoregressive Lag—Order Selection Using Conditional Saddlepoint Approximations
A new method for determining the lag order of the autoregressive polynomial in regression models with autocorrelated normal disturbances is proposed. It is based on a sequential testing procedure using conditional saddlepoint approximations and permits the desire for parsimony to be explicitly incorporated, unlike penalty-based model selection methods. Extensive simulation results indicate that...
متن کاملTwo-stage Procedure in P-Order Autoregressive Process
In this paper, the two-stage procedure is considered for autoregressive parameters estimation in the p-order autoregressive model ( AR(p)). The point estimation and fixed-size confidence ellipsoids construction are investigated which are based on least-squares estimators. Performance criteria are shown including asymptotically risk efficient, asymptotically efficient, and asymptotically consist...
متن کامل